题目内容

【题目】已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+

(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠ ,求OP2的最小值.

【答案】
(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,

当n=1时,s=

∴a= =


(2)解:解法一:∵OP=AP,PA⊥OP,

∴△OPA是等腰直角三角形.

∴m=n=

∴1+ = an.

即n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.

解法二:∵OP=AP,PA⊥OP,

∴△OPA是等腰直角三角形.

∴m=n.

设△OPQ的面积为s1

则:s1= mn= (1+ ),

即:n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.


(3)解:解法一:∵PA⊥OP,PQ⊥OA,

∴△OPQ∽△OAP.

设:△OPQ的面积为s1,则 =

即: = 化简得:

化简得:

2n4+2k2﹣kn4﹣4k=0

(k﹣2)(2k﹣n4)=0,

∴k=2或k= (舍去),

∴当n是小于20的整数时,k=2.

∵OP2=n2+m2=n2+ 又m>0,k=2,

∴n是大于0且小于20的整数.

当n=1时,OP2=5,

当n=2时,OP2=5,

当n=3时,OP2=32+ =9+ =

当n是大于3且小于20的整数时,

即当n=4、5、6…19时,OP2的值分别是:

42+ 、52+ 、62+ …192+

∵192+ >182+ >32+ >5,

∴OP2的最小值是5.


【解析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形, 由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网