题目内容
在半径为13的圆O中,弦AB平行于弦CD,弦AB和弦CD之间的距离为6,若AB=24,则CD长为_____.
如图所示,点A,B,C,D,E,F,G,H,K都是8×8方格纸中的格点,为使△DEM∽△ABC,则点M应是F、G、H、K四点中的( )
A. F B. G C. H D. K
在正方形ABCD中,点E是AD的中点,连接BE,BF平分∠EBC交CD于点F,交AC于点G,将△CGF沿直线GF折叠至△C′GF,BD与△C′GF相交于点M、N,连接CN,若AB=6,则四边形CNC′G的面积是_____.
若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是( )
A. a<﹣b<b<﹣a B. ﹣b<a<﹣a<b C. a<﹣b<﹣a<b D. ﹣b<a<b<﹣a
如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.试判断线段AB与DE的数量关系和位置关系,并说明理由.
如图,在?ABCD中,M是BC延长线上的一点,若∠A=125°,则∠MCD的度数是( )
A. 45° B. 65° C. 55° D. 75°
如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示
科目
语文
数学
外语
成绩
+15
-3
-6
请回答,该生成绩最好和最差的科目分别是什么?