题目内容

27、小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.
(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;
(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;
(3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.
分析:(1)连接AD,BD,易证△ADB为等腰三角形,根据等腰三角形三线合一这一性质,可以证得AE=BE.
(2)根据圆内接四边形的性质,先∠CDA=∠CDF,再证△AFD为等腰三角形,进一步证得PB=PF,从而证得结论.
(3)根据圆内接四边形的性质,证得∠BAC=∠ABC,因为△ACB为等腰三角形,所以PB=PF,进而求得AE=PE-PB.
解答:证明:(1)连接AD,BD,
∵C是劣弧AB的中点
∴∠CDA=∠CDB,
∴△ADB为等腰三角形,
∵CD⊥AB,
∴AE=BE;

(2)延长DB、AP相交于点F,再连接AD,
∵ADBP是圆内接四边形,
∴∠PBF=∠PAD,
∵C是劣弧AB的中点,
∴∠CDA=∠CDF,
∵CD⊥PA,
∴△AFD为等腰三角形,
∴∠F=∠A,AE=EF,
∴∠PBF=∠F,
∴PB=PF,
∴AE=PE+PB

(3)AE=PE-PB.
连接AD,BD,AB,BD,DB、AP相交于点F,
∵弧AC=弧BC,
∴∠ADC=∠BDC,
∵CD⊥AP,
∴∠DEA=∠DEF,∠ADE=∠FED,
∵DE=DE,
∴△DAE≌△DFE,
∴AD=DF,AE=EF,
∴∠DAF=∠DFA,
∴∠DFA=∠PFB,∠PBD=∠DAP,
∴∠PFB=∠PBF,
∴PF=PB,
∴AE=PE-PB;
点评:此题主要考查了垂径定理及其推论,垂径定理-在5个条件中,1.平分弦所对的一条弧;2.平分弦所对的另一条弧;3.平分弦;4.垂直于弦;5.经过圆心(或者说直径).只要具备任意两个条件,就可以推出其他的三个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网