题目内容
今年,苏州市政府的一项实事工程就是由政府投入1000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:
(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有______户;
(2)改造后一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?
(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?
改造情况 | 均不改造 | 改造水龙头 | 改造马桶 | ||||
1个 | 2个 | 3个 | 4个 | 1个 | 2个 | ||
户数 | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(2)改造后一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?
(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?
(1)在抽查的120户中,均不改造的20户,另外的100户需要对水龙头、马桶进行改造.照此比例,估计该社区1200户家庭中需要对水龙头、马桶进行改造的家庭户数为
1200×
=1000(户)
(2)抽样的120户家庭一年共可节约用水:
(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2085(吨).
所以,该社区一年共可节约用水的吨数为2085×
=20850(吨).
(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92一x)户,只改造马桶不改造水龙头的家庭共有(71一x)户,根据题意列方程,得
x+(92-x)+(71-x)=100,解得,x=63.
所以,既要改造水龙头又要改造马桶的家庭共有63户.
也可以从另一角度考虑,从表中数据可以看出,在这120户中,改造水龙头和改造马桶的户数之和为31+28+21+12+69+2=163(户).
由于只有100户需要对水龙头、马桶进行改造,所以多出的就是既要改造水龙头又要改造马桶的家庭.因此,此类家庭的人数为163-100=63(户).
答:既要改造水龙头又要改造马桶的家庭共有63户.
1200×
100 |
120 |
(2)抽样的120户家庭一年共可节约用水:
(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2085(吨).
所以,该社区一年共可节约用水的吨数为2085×
1200 |
120 |
(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92一x)户,只改造马桶不改造水龙头的家庭共有(71一x)户,根据题意列方程,得
x+(92-x)+(71-x)=100,解得,x=63.
所以,既要改造水龙头又要改造马桶的家庭共有63户.
也可以从另一角度考虑,从表中数据可以看出,在这120户中,改造水龙头和改造马桶的户数之和为31+28+21+12+69+2=163(户).
由于只有100户需要对水龙头、马桶进行改造,所以多出的就是既要改造水龙头又要改造马桶的家庭.因此,此类家庭的人数为163-100=63(户).
答:既要改造水龙头又要改造马桶的家庭共有63户.
练习册系列答案
相关题目