题目内容
如图是由5个大小相同的小立方体组成的立体图形,这个立体图形的左视图是
A. B.
C. D.
如图乙,和是有公共顶点的等腰直角三角形,,点P为射线BD,CE的交点.
如图甲,将绕点A 旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是______.
若,,把绕点A旋转,
当时,求PB的长;
求旋转过程中线段PB长的最大值.
多项式a2-9与a2-3a的公因式是( )
A. a+3 B. a-3 C. a+1 D. a-1
比较大小:______填“”,“”,或“”
如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在外,内,上,则原点O的位置应该在
A. 点A与点B之间靠近A点 B. 点A与点B之间靠近B点
C. 点B与点C之间靠近B点 D. 点B与点C之间靠近C点
如图,已知CA=CB,点E,F在射线CD上,满足∠BEC=∠CFA,且∠BEC+∠ECB+∠ACF=180°.
(1)求证:△BCE≌△CAF;
(2)试判断线段EF,BE,AF的数量关系,并说明理由.
如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED.
先画图,再解答:
(1)画线段AB,并反向延长AB到点C,使AC=AB,再取BC的中点D;
(2)若线段CD=6cm,求线段AB的长.
某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.