题目内容
用配方法解方程2x2﹣x﹣1=0,变形结果正确的是( )
A. (x﹣)2= B. (x﹣)2= C. (x﹣)2= D. (x﹣)2=
根据题意,解答问题:
(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.
已知a,b是有理数,若a在数轴上的对应点的位置如图所示,且a+b<0,有以下结论:①b<0;②b-a>0;③|-a|>-b;④<-1.则正确的结论是( )
A. ①④ B. ①③ C. ②③ D. ②④
直角三角形两直角边的比为3:4,其斜边长10,则两直角边的长分别是_____.
如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=( )
A. B.
C. D.
细心观察图形,认真分析各式,然后解答问题:
OA1=1;
OA2=; S1=×1×1=;
OA3=; S2=××1=;
OA4=; S3=××1=;
(1)推算出OA10= .
(2)若一个三角形的面积是.则它是第 个三角形.
(3)用含n(n是正整数)的等式表示上述面积变化规律;
(4)求出S12+S22+S23+…+S2100的值.
(1)计算:
(2)求x的值:
如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.
(1)A,B两点间的距离是________.
(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.
(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?
(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.
如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A. 90°-α B. 90°+ α C. D. 360°-α