题目内容

将下列各多项式分解因式
(1)a3-9a
(2)x2(x-y)+y2(y-x)
(3)m(2x+y)2-m(x+2y)2
(4)81+x4-18x2
(5)数学公式
(6)x2-x-12
(7)6x2-7x-5
(8)6a2+15ab+9b2
(9)a2+4ab+4b2-ac-2bc;
(10)(1+y)2-2x2(1-y2)+x4(1-y)2

解:(1)a3-9a
=a(a2-9)
=a(a+3)(a-3);

(2)x2(x-y)+y2(y-x)
=(x-y)(x2-y2
=(x-y)2(x+y);

(3)m(2x+y)2-m(x+2y)2
=m[(2x+y)2-(x+2y)2]
=m(2x+y+x+2y)(2x+y-x-2y)
=3m(x+y)(x-y);

(4)81+x4-18x2
=(x2-9)2
=(x+3)2(x-3)2

(5)2x2+2x+
=(4x2+4x+1)
=(2x+1)2

(6)x2-x-12=(x+3)(x-4);

(7)6x2-7x-5=(2x+1)(3x-5);

(8)6a2+15ab+9b2=3(a+b)(2a+3b);

(9)a2+4ab+4b2-ac-2bc
=(a2+4ab+4b2)-(ac+2bc)
=(a+2b)2-c(a+2b)
=(a+2b)(a+2b-c);

(10)(1+y)2-2x2(1-y2)+x4(1-y)2
=(1+y)2-2x2(1+y)(1-y)+x4(1-y)2
=(x2-x2y-y-1)2
分析:(1)先提取公因式a,再对余下的多项式利用平方差公式继续分解;
(2)先提取公因式(x-y),再对余下的多项式利用平方差公式继续分解;
(3)先提取公因式m,再对余下的多项式利用平方差公式继续分解;
(4)先利用完全平方公式分解因式,再利用平方差公式继续分解;
(5)先提取公因式,再对余下的多项式利用完全平方公式继续分解;
(6)(7)(8)利用十字相乘法分解因式;
(9)前三项一组,后两项一组利用分组分解法分解因式;
(10)利用完全平方公式分解因式即可.
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网