题目内容
在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是______.
已知为实数,且满足,则代数式的值为________.
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,AD与BE相交于点F,且AE=CD.
(1)求证:AD=BE;
(2)求∠BFD的度数.
如图,已知,,有下列条件:;;;其中能使∽的条件有
A. 4个 B. 3个 C. 2个 D. 1个
、两组卡片共张,中三张分别写有数字,,,中两张分别写有,.它们除了数字外没有任何区别.
随机地从中抽取一张,求抽到数字为的概率;
随机地分别从、中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
如果不公平请你修改游戏规则使游戏规则对甲乙双方公平.
某班有男生名,女生名,从该班任意抽取一名学生进行学情调查,抽到女生的概率为________.
某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是( )
A. B. C. D.
圆内接四边形ABCD中,∠A:∠B:∠C:∠D=3:5:6:m,则m=_____,∠D=_____.
如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED
证明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)