题目内容
.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
(1)过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角形,
∴AB=OB=2,∠BAO=60°,
∴BC=,OC=AC=1,
即B()
(2)当点P在x轴上运动(P不与O重合)时,不失一般性,
∵∠PAQ==∠OAB=60°,
∴∠PAO=∠QAB,
在△APO和△AQB中,
∵AP=AQ,∠PAO=∠QAB,AO=AB
∴△APO≌△AQB总成立,
∴∠ABQ=∠AOP=90°总成立,
∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。
(3)由(2)可知,点Q总在过点B且与AB垂直的直线上,
可见AO与BQ不平行。
① 当点P在x轴负半轴上时,点Q在点B的下方,
此时,若AB∥OQ,四边形AOQB即是梯形,
当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°。
又OB=OA=2,可求得BQ=,
由(2)可知,△APO≌△AQB,∴OP=BQ=,
∴此时P的坐标为()。
②当点P在x轴正半轴上时,点Q在嗲牛B的上方,
此时,若AQ∥OB,四边形AOQB即是梯形,
当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°。
又AB= 2,可求得BQ=,
由(2)可知,△APO≌△AQB,∴OP=BQ=,
∴此时P的坐标为()。
综上,P的坐标为()或()。
解析:略
练习册系列答案
相关题目