题目内容
如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴 于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.
在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:
参赛者编号
1
2
3
4
5
成绩(分)
96
88
86
93
那么这五位同学演讲成绩的众数与中位数依次是( )
A. 96,88 B. 92,88 C. 88,86 D. 86,88
如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=_____.
某地民政局计划将批物资运往灾区,在这批物资中,帐篷和食品共320件,帐篷比食品多80件.
(1)求帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这些物资全部运往灾区,已知甲型货车最多可装帐篷40件和食品10件;乙种货车最多可装帐篷和食品各20件,计算说明安排甲、乙两种货车有几种方案?
(3)在(2)的条件下,甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元,民政局应选择哪种运输方案,才能使运输费用最少?最少费用是多少?
计算(1)(﹣)0++|2﹣|
(2)(﹣)÷+(2+)(2﹣)
如图,是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( )
A. 10 B. 12 C. 15 D. 18
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
一个不透明的袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率( )
A. B. C. D.
如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为_______cm.