题目内容
(题文)先化简,再求值:,其中
二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,对称轴为x=,且经过点(2,0).下列结论:①ac<0;②4a+2b+c<0;③a-b+c=0;④若(-2,y1),(-3,y2)是抛物线上的两点,则y1<y2.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD
理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.
∵S△PBC+S△PAD=BC•PF+AD•PE=BC(PF+PE)=BC•EF=S矩形ABCD.
(1)请补全以上证明过程.
(2)请你参考上述信息,当点P分别在图1、图2中的位置时,S△PBC、S△PAC、SPCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.
下列命题中正确的是( )
A. 对角线相等的四边形是矩形
B. 对角线互相垂直的四边形是矩形
C. 对角线相等的平行四边形是矩形
D. 对角线互相垂直的平行四边形是矩形
如图1,在平面直角坐标系中直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转得到CD,此时点D恰好落在直线AB上时,过点D作轴于点E.
求证:≌;
如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;
若点P在y轴上,点Q在直线AB上是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.
如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;
如图,在中,,将绕顶点C逆时针旋转得到△,M是BC的中点,P是的中点,连接若,,则线段PM的最大值是
A. 4 B. 3 C. 2 D. 1
先化简,再求值:,且x为满足-3<x<2的整数.
如图,菱形的边长为2,∠ABC=45°,则点D的坐标为( )
A. (2,2) B. (2+,) C. (2,) D. (,)