ÌâÄ¿ÄÚÈÝ
½«x1=2 |
3 |
1 |
x |
1 |
x |
1 |
x |
1 |
x |
·ÖÎö£ºÊ×Ïȸù¾ÝÌâÄ¿ÒªÇó·Ö±ðÇó³öy1¡¢y2¡¢y3¡£¬ÈÝÒ׿´³öÿÈý¸öÊýÑ»·£¬È»ºóÓÃ2005³ý3¼´¿É½â¾öÎÊÌ⣮
½â´ð£º½â£ºµ±x1=
ʱ£¬y1=-
£»
µ±x2=y1+1=-
ʱ£¬y2=2£»
µ±x3=y2+1=3ʱ£¬y3=-
£»
µ±x4=y3+1=
ʱ£¬y4=-
£»
¿ªÊ¼Ñ»·³öÏÖ£¬
ËùÒÔ2005=668¡Á3+1£¬
ÓÉ´ËֵΪ2µÄÇé¿ö¹²³öÏÖÁË668´Î£®
¹Ê´ð°¸Îª£º668£®
2 |
3 |
3 |
2 |
µ±x2=y1+1=-
1 |
2 |
µ±x3=y2+1=3ʱ£¬y3=-
1 |
3 |
µ±x4=y3+1=
2 |
3 |
3 |
2 |
¿ªÊ¼Ñ»·³öÏÖ£¬
ËùÒÔ2005=668¡Á3+1£¬
ÓÉ´ËֵΪ2µÄÇé¿ö¹²³öÏÖÁË668´Î£®
¹Ê´ð°¸Îª£º668£®
µãÆÀ£º´ËÌâÄѶȽϴó£¬Ö÷ÒªÀûÓÃÁËÒÑÖª×Ô±äÁ¿Çóº¯ÊýÖµ£¬È»ºóÕÒ¹æÂÉ£¬´Ó¶ø½â¾öÌâÄ¿ÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿