题目内容

【题目】九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.

(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.

(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.

【答案】(1)(2)他们获奖机会不相等,理由见解析.

【解析】

(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率

(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,

∴获奖的概率是

故答案为:

(2)他们获奖机会不相等,理由如下:

小芳:

笑1

笑2

哭1

哭2

笑1

笑1,笑1

笑2,笑1

哭1,笑1

哭2,笑1

笑2

笑1,笑2

笑2,笑2

哭1,笑2

哭2,笑2

哭1

笑1,哭1

笑2,哭1

哭1,哭1

哭2,哭1

哭2

笑1,哭2

笑2,哭2

哭1,哭2

哭2,哭2

∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,

∴P(小芳获奖)=

小明:

笑1

笑2

哭1

哭2

笑1

笑2,笑1

哭1,笑1

哭2,笑1

笑2

笑1,笑2

哭1,笑2

哭2,笑2

哭1

笑1,哭1

笑2,哭1

哭2,哭1

哭2

笑1,哭2

笑2,哭2

哭1,哭2

∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,

∴P(小明获奖)=

∵P(小芳获奖)≠P(小明获奖),

∴他们获奖的机会不相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网