题目内容
△ABC的三边长分别为a,b,c,且满足:a2c2-b2c2=a4-b4,试判断三角形的形状.
解:∵a2c2-b2c2=a4-b4,------①
∴c2(a2-b2)=(a2+b2)(a2-b2).----②
∴c2=a2+b2.------③
∴△ABC为直角三角形.--------④
上述解答过程中,第 步开始出现错误.正确答案应为△ABC是 三角形.
解:∵a2c2-b2c2=a4-b4,------①
∴c2(a2-b2)=(a2+b2)(a2-b2).----②
∴c2=a2+b2.------③
∴△ABC为直角三角形.--------④
上述解答过程中,第
分析:把等式两边分解因式,左右两边同除以相同的因式,可得c2=a2+b2,根据勾股定理的逆定理即可判断三角形的形状.
解答:解:∵a2c2-b2c2=a4-b4,
∴c2(a2-b2)=(a2-b2)(a2+b2)=(a+b)(a-b)(a2+b2),
∵a+b≠0,
∴a=b或c2=a2+b2,
∴该三角形是等腰三角形或直角三角形,
∴第②步开始出现错误.正确答案应为△ABC是等腰三角形或直角三角形,
故答案为:②,等腰三角形或直角.
∴c2(a2-b2)=(a2-b2)(a2+b2)=(a+b)(a-b)(a2+b2),
∵a+b≠0,
∴a=b或c2=a2+b2,
∴该三角形是等腰三角形或直角三角形,
∴第②步开始出现错误.正确答案应为△ABC是等腰三角形或直角三角形,
故答案为:②,等腰三角形或直角.
点评:本题考查勾股定理的逆定理的应用,同时要灵活掌握分解因式.
练习册系列答案
相关题目
已知△ABC的三边长分别为:6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,当△DEF的另两边长是下列哪一组时,这两个三角形相似( )
A、2cm,3cm | B、4cm,5cm | C、5cm,6cm | D、6cm,7cm |