题目内容
【题目】已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=,求DE的长.
【答案】(1)(2)DE是⊙O的切线(3)
【解析】
试题分析:(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;
(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;
(3)连接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.
试题解析:(1)连接CD,
∵BC为⊙O的直径,∴CD⊥AB,
又∵AC=BC,
∴AD=BD,即点D是AB的中点.
(2)DE是⊙O的切线.
证明:连接OD,则DO是△ABC的中位线,
∴DO∥AC,
又∵DE⊥AC,
∴DE⊥DO即DE是⊙O的切线;
(3)∵AC=BC,∴∠B=∠A,
∴cosB=cosA=,
∵cosB=,BC=18,
∴BD=6,
∴AD=6,
∵cosA=,
∴AE=2,
在Rt△AED中,DE=.
练习册系列答案
相关题目