题目内容
下列关于方程的描述正确的是
A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 有一个实数根 D. 无实数根
如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.
(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;
(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.
(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.
某校八年级同学到距离学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往目的地。如图,,分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是( )
A. 骑车的同学比步行的同学晚出发30分钟 B. 步行的速度是6千米/小时
C. 骑车同学从出发到追上步行同学用了20分钟 D. 骑车同学和步行的同学同时到达目的地
如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
如图,在中, ,将绕顶点逆时针旋转得到Rt△DEC,点M是BC的中点,点P是DE的中点,连接PM,若BC =2,∠BAC=30°,则线段PM的最大值是 ( )
A. 4 B. 3 C. 2 D. 1
如图1,点EF在直线l的同一侧,要在直线l上找一点K,使KE与KF的距离之和最小,我们可以作出点E关于l的对称点E′,连接FE′交直线L于点K,则点K即为所求.
(1)(实践运用)抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).如图2.
①求该抛物线的解析式;
②在抛物线的对称轴上找一点P,使PA+PC的值最小,并求出此时点P的坐标及PA+PC的最小值.
(2)(知识拓展)在对称轴上找一点Q,使|QA﹣QC|的值最大,并求出此时点Q的坐标.
若抛物线y=x2+6x+k2的顶点M在直线y=﹣4x﹣5上,求k的值.
观察下列算式:
①1×3-22=3-4=-1;
②2×4-32=8-9=-1;
③3×5-42=15-16=-1;
…
(1)请按照以上规律写出第10个等式。
(2)请按照以上规律写出第n个等式。
(3)(2)中的式子一定成立吗?若不一定成立,请举出反例;若一定成立,请说出理由。
如图,在矩形中,是边上的一个动点,当点在(不含两点)上运动时,若是以为斜边的直角三角形,则等于( )
A. B. 或 C. D. 或