题目内容
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),S四边形AEPF=S△ABC,上述结论中始终正确有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】∵AB=AC,∠BAC=90°,P是BC中点,
∴AP⊥BC,AP=PB,
∠B=∠CAP=45°,
∵∠APF+∠FPA=90°,
∠ APF+∠BPE=90°,
∴∠APF=∠BPE,
在△BPE和△APF中,
∠B=∠CAP, BP=AP,∠BPE =∠APF,
∴△PFA≌△PEB;故①正确;
∵△ABC是等腰直角三角形点P是BC的中点,
∴AP=BC,
又∵EF不一定是△ABC的中位线,
∴EF≠AP,故结论②错误;
∵△PFA≌△PEB,
∴PE=PF,
又∵∠EPF=90°,
∴△PEF是等腰直角三角形,故③正确;
∵△PFA≌△PEB,
∴S△PFA =S△PEB,
∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=S△ABC,故结论④正确;
综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.
故选:C.
练习册系列答案
相关题目