题目内容
已知:如图,,.求证:.
如图,是的直径,是的切线,切点为,与的延长线交于点,,给出下面四个结论:
①;②;③;④,
其中正确的个数为( )
A. 个 B. 个 C. 个 D. 个
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.
⑴求证:CD是⊙O的切线;
⑵若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求的值.
如图,在⊙O中C为的中点,BC=,O到AB的距离为1,则半径的长( )
A. 2 B. 3 C. 4 D. 5
如图,已知四边形中,,,且,,对角线.
求证:四边形是矩形;
如图,若动点从点出发,在边上以每秒的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,运动时间为秒,连接、,若,求的值;
如图,若点在对角线上,,动点从点出发,以每秒的速度沿运动至点止.设点运动了 秒,请你探索:从运动开始,经过多少时间,以点、、为顶点的三角形是等腰三角形?请求出所有可能的结果.
小明想利用影长测量学校的旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长米;同时旗杆的影子一部分落在地面上,另一部分落在墙上,分别测得长度为米和米,则学校的旗杆的高度为________米.
阳光通过窗口照到室内,在地上留下宽的亮区(如图),已知亮区一边到窗下的墙角的距离,窗口高,那么窗口底边离地面的高等于( )
A. 2m B. 4m C. 6m D. 1m
我市前年的投入资金是万元用于校舍改造,今年投入资金是万元.若设这两年投入改造资金的年平均增长率为,则根据题意可列方程为________.
在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,
①BC与CF的位置关系是: ;
②BC、CD、CF之间的数量关系为: (将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.