题目内容
将点(3,-4)向右平移 2 个单位长度,再向下平移 3 个单位长度,得到的新点的坐标 为(a,b),则 ab=________.
如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是 ( )
A. m2 B. m2 C. 1 600sinαm2 D. 1 600cosαm2
计算:3﹣1﹣(2018﹣π)0+﹣|﹣2|.
如图,在平面直角坐标系内,点 O 为坐标原点,点 A 在 x 轴负半轴上,点 B、C 分别在 x 轴、y 轴正半轴上,且 OB=2OA,OB﹣OC=OC﹣OA=2.
(1)求点 C 的坐标;
(2)点 P 从点 A 出发以每秒 1 个单位的速度沿 AB 向点 B 匀速运动,同时点 Q 从点 B 出发 以每秒 3 个单位的速度沿 BA 向终点 A 匀速运动,当点 Q 到达终点 A 时,点 P、Q 均停止运 动,设点 P 运动的时间为 t 秒(t>0),线段 PQ 的长度为 y,用含 t 的式子表示 y,并写出 相应的 t 的范围;
(3)在(2)的条件下,过点 P 作 x 轴的垂线 PM,PM=PQ,是否存在 t 值使点 O 为 PQ 中 点?若存在求 t 值并求出此时三角形 CMQ 的面积;若不存在,请说明理由.
计算:
若≈5.036,≈15.925,则的值约为( )
A. 159.25 B. 50.36 C. 1592.5 D. 503.6
如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
某班有20位同学参加乒乓球、羽毛球比赛,甲说:“只参加一项的人数大于14人。”乙说:“两项都参加的人数小于5人。”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )
A. 若甲对,则乙对 B. 若乙对,则甲对
C. 若乙错,则甲错 D. 若甲错,则乙对
在平行四边形ABCD中,,,点E为BC中点,连结AE,将沿AE折叠到△AB?E的位置,若,则点B?到直线BC的距离为______.