题目内容

【题目】如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.

(1)若点C恰为AB的中点,求DE的长;
(2)若AC=6cm,求DE的长;
(3)试说明不论AC取何值(不超过16cm),DE的长不变;
(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.

【答案】
(1)解:∵点C恰为AB的中点,

∴AC=BC= AB=8cm,

∵点D、E分别是AC和BC的中点,

∴DC= AC=4cm,CE= BC=4cm,

∴DE=8cm


(2)解:∵AB=16cm,AC=6cm,

∴BC=10cm,

由(1)得,DC= AC=3cm,CE= CB=5cm,

∴DE=8cm


(3)解:∵点D、E分别是AC和BC的中点,

∴DC= AC,CE= BC,

∴DE= (AC+BC)= AB,

∴不论AC取何值(不超过16cm),DE的长不变


(4)解:∵OD、OE分别平分∠AOC和∠BOC,

∴∠DOC= ∠AOC,∠EOC= ∠BOC,

∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,

∴∠DOE=65°与射线OC的位置无关


【解析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)= ∠AOB,得到∠DOE=65°与射线OC的位置无关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网