题目内容
【题目】如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有( )
A. 5对 B. 6对 C. 8对 D. 10对
【答案】D
【解析】∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,
∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,
又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,
易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.
故选D.
练习册系列答案
相关题目
【题目】均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷实验,结果统计如下:
朝下的数字 | 1 | 2 | 3 | 4 |
出现的次数 | 16 | 20 | 14 | 10 |
(1)计算上述实验中“4”朝下的频率.
(2)“根据实验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?请说明理由.