题目内容
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(
)在双曲线
上(在A点左侧).过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.![]()
(1)若点D坐标是(-8,0),求A、B两点坐标及
的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求此时M点的坐标;
(3)在(2)的条件下,设直线AM分别与x轴、y轴相交于点P、Q两点,求MA:PQ的值.
(1)B(-8,-2).而A、B两点关于原点对称,∴A(8,2).
.……………………………………………2分
(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,
∴
,B(-2m,-
),C(-2m,-n),E(-m,-n).
S矩形DCNO
,S△DBO=
,S△OEN =
,
∴S四边形OBCE= S矩形DCNO-S△DBO- S△OEN=k.∴
. …………4分
由直线
及双曲线
,得A(4,1),B(-4,-1),
∴M(2,2).……………………………………………………6分
(3)求出直线MA解析式为:
,所以P(-6,0),Q(0,3)
利用相似或勾股定理得
=
………………………… 10分
解析
练习册系列答案
相关题目