题目内容

已知x=2
a
+1,y=4-
a
,则下列说法正确的是(  )
分析:A、a可以为0,本选项错误;
B、由x>y列出关于a的不等式,求出不等式的解集得到a的范围,即可做出判断;
C、求出t2-2t+3的最小值,确定出a的范围,即可做出判断;
D、将x与y代入x2+y2=18中计算得到a的值,即可做出判断.
解答:解:A、当a=0时,x=1,y=4,有意义,本选项错误;
B、由x>y得到2
a
+1>4-
a
,解得:a>1,本选项错误;
C、t2-2t+3=t2-2t+1+2=(t-1)2+2≥2,即a≥2,可得出x一定大于y,本选项正确;
D、将x=2
a
+1,y=4-
a
代入x2+y2=18得:4a+1+4
a
+14+a-8
a
=18,
整理得:5a-4
a
-3=0,
∵△=16+60=76>0,∴方程有两个不相等的实数根,
但两根之积为-3,得到两根异号,故负根舍去,则存在一个a的值使得x2+y2=18成立,本选项错误,
故选C
点评:此题考查了二次根式的化简求值,根的判别式,配方法的应用,以及不等式的性质,弄清题意是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网