题目内容
设a,b,c,d都是非零实数,则四个数:﹣ab,ac,bd,cd( )
A. 都是正数 B. 都是负数
C. 是两正两负 D. 是一正三负或一负三正
如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值等于 ( )
A. +3 B. 2-2 C. 2- D. 2+3
在二次函数y=x 2 +bx+c中,若系数b和c可在1,2,3,4,5,6中取值,则其中与x轴有交点的抛物线的个数是_________________.
(2014•黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求证:tan∠E= .
在()0,|﹣|,tan30°,10﹣2这几个实数中,最大的实数是_____.
如果解关于x的分式方程时出现增根,那么m的值为( )
A. B. 2 C. 4 D.
如图,AB是⊙O的直径, ,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OB∶OB′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为( )
A. 4∶9 B. 2∶5 C. 2∶3 D.
如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;则A2A3=_____;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的纵坐标为_____.