题目内容
如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值( )
A. 增大 B. 减小 C. 不变 D. 先增大再减小
一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。则两次都摸到红球的概率是( )
A. B. C. D.
计算:=_______.
如图所示,C城市在A城市正东方向,现计划在A,C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:)
如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=_______.
已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( )
(8分)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.
请结合图象信息解答下列问题:
(1)慢车的速度是 千米/小时,快车的速度是 千米/小时;
(2)求m的值,并指出点C的实际意义是什么?
(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?
如图,抛物线y1=ax2+bx+c(a≠0)的顶点坐标A(﹣1,3),与x轴的一个交点B(﹣4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③抛物线与x轴的另一个交点坐标是(3,0);④方程ax2+bx+c﹣3=0有两个相等的实数根;⑤当﹣4<x<﹣1时,则y2<y1.
其中正确的是( )
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
如图,在△ABC中,AC=BC=2,∠C=900,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则DF的长为 __________________