题目内容
半径为5cm的圆内有两条弦AB∥CD,且AB=6cm,CD=8cm,则AB、CD间的距离为( )
分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
解答:
解:①当弦AB和CD在圆心同侧时,如图,
∵AB=8cm,CD=6cm,
∴AE=4cm,CF=3cm,
∵OA=OC=5cm,
∴EO=3cm,OF=4cm,
∴EF=OF-OE=1cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=8cm,CD=6cm,
∴AF=4cm,CE=3cm,
∵OA=OC=5cm,
∴EO=4cm,OF=3cm,
∴EF=OF+OE=7cm.
综上所述,AB、CD间的距离为1cm或7cm.
故选:C.
∵AB=8cm,CD=6cm,
∴AE=4cm,CF=3cm,
∵OA=OC=5cm,
∴EO=3cm,OF=4cm,
∴EF=OF-OE=1cm;
②当弦AB和CD在圆心异侧时,如图,
∴AF=4cm,CE=3cm,
∵OA=OC=5cm,
∴EO=4cm,OF=3cm,
∴EF=OF+OE=7cm.
综上所述,AB、CD间的距离为1cm或7cm.
故选:C.
点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.
练习册系列答案
相关题目