题目内容

如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.
(1)求证:FB=FD;
(2)如图2,连接AE,求证:AE∥BD;
(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.
考点:翻折变换(折叠问题),全等三角形的判定与性质
专题:证明题
分析:(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;
(2)根据长方形的性质可得和三角形内角和定理可得∠AEF=∠FBD,再根据平行线的判定即可求解;
(3)先SSS证明△ABD≌△EDB,再根据全等三角形的性质和垂直平分线的性质即可求解.
解答:证明(1)∵△BCD≌△BED,
∴∠DBC=∠EBD,
又∵四边形ABCD是长方形,
∴AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠EBD,
∴BF=DF.

(2)∵四边形ABCD是长方形,
∴AD=BC=BE,
又∵FB=FD,
∴FA=FE,
∴∠FAE=∠FEA,
又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,
∴∠AEF=∠FBD,
∴AE∥BD;

(3)∵四边形ABCD是长方形,
∴AD=BC=BE,AB=CD=DE,BD=DB,
在△ABD与△EDB中,
AD=BE
AB=DE
BD=DB

∴△ABD≌△EDB(SSS),
∴∠ABD=∠EDB,
∴GB=GD,
又∵FB=FD,
∴GF是BD的垂直平分线,即GH垂直平分BD.
点评:本题考查了:
①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
②全等三角形的判定和性质,等角对等边,三角形的内角和,平行线的判定求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网