题目内容
【题目】如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是 .
【答案】(﹣1,1)
【解析】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: 第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12× =4,物体乙行的路程为12× =8,在BC边相遇;
第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2× =8,物体乙行的路程为12×2× =16,在DE边相遇;
第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3× =12,物体乙行的路程为12×3× =24,在A点相遇;
…
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵2015÷3=671…2,
故两个物体运动后的第2015次相遇地点的是:第二次相遇地点,
即物体甲行的路程为12×2× =8,物体乙行的路程为12×2× =16,在DE边相遇;
此时相遇点的坐标为:(﹣1,1).
故答案为:(﹣1,1).
利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
练习册系列答案
相关题目