题目内容
【题目】将正方形ABCD(如图1)作如下划分:
第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;
第2次划分:将图2左上角正方形AEMH再作划分,得图3,则图3中共有9个正方形;
(1)若每次都把左上角的正方形一次划分下去,则第100次划分后,图中共有______个正方形;
(2)继续划分下去,第几次划分后能有805个正方形?写出计算过程.
(3)能否将正方形性ABCD划分成有2018个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.
(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把数量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果吧.
计算.(直接写出答案即可)
【答案】(1)401;(2)201;(3)不能;(4).
【解析】试题分析:(1)观察图形可得第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,由此可得第n次可得(4n+1)个正方形,把n=100代入后即可求解;(2)令4n+1=805,解方程即可求解;(3)令4n+1=2018,解方程即可判断;(4)本题可看作上面几何体面积问题,即可求得答案.
试题解析:
(1)∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,∴第100次可得正方形:4×100+1=401(个);
故答案为:401;
(2)根据题意得:4n+1=805,解得:n=201;
∴第201次划分后能有805个正方形;
(3)不能,∵4n+1=2018,解得:n=504.25,∴n不是整数,∴不能将正方形性ABCD划分成有2018个正方形的图形;
(4)
=
【题目】为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.
(1)请根据图中所提供的信息填写下表:
平均数 | 中位数 | 体能测试成绩合格次数 | |
甲 | 65 | ||
乙 | 60 |
(2)请从下面两个不同的角度对运动员体能测试结果进行判断: ①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?
②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?
(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.