题目内容
如图,在?ABCD中,AB=20cm,AD=30cm,∠ABC=60°,点Q从点B出发沿BA向点A匀速运动,速度为2cm/s,同时,点P从点D出发沿DC向点C匀速运动,速度为3cm/s,当点P停止运动时,点Q也随之停止运动,过点P做PM⊥AD交AD于点M,连接PQ、QM.设运动的时间为ts(0<t≤6).
(1)当PQ⊥PM时,求t的值;
(2)设△PQM的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得△PQM的面积是?ABCD面积的?若存在,求出相应t的值;若不存在,请说明理由;
(4)过点M作MN∥AB交BC于点N,是否存在某一时刻t,使得P在线段MN的垂直平分线上?若存在,求出相应t的值;若不存在,请说明理由;
练习册系列答案
相关题目