题目内容
【题目】已知关于x的一元二次方程x2+mx﹣6=0.
(1)求证:不论m为何实数,方程总有两个不相等的实数根;
(2)若m=1,用配方法解这个一元二次方程.
【答案】(1)见解析,(2)x1=2,x2=﹣3.
【解析】
(1)根据方程的系数结合根的判别式,可得出△=m2+24>0,进而即可证出:不论m为何实数,方程总有两个不相等的实数根;
(2)代入m=1,根据配方法解一元二次方程的步骤求解,即可得出结论.
解:(1)证明:△=m2﹣4×1×(﹣6)=m2+24.
∵m2≥0,
∴m2+24>0,即△>0,
∴不论m为何实数,方程总有两个不相等的实数根;
(2)解:当m=1时,原方程为x2+x﹣6=0,
移项,得:x2+x=6,
配方,得:x2+2×x+()2=6+()2,即(x+)2=()2,
开方,得:x+=±,
∴x1=2,x2=﹣3.
【题目】某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩十分制如下:
整理、描述数据按如下分数段整理、描述这两组样本数据:
10 | |||||
排球 | 1 | 1 | 2 | 7 | 5 |
篮球 |
说明:成绩分及以上为优秀,6分及以上为合格,6分以下为不合格
分析数据两组样本数据的平均数、中位数、众数如下表所示:
项目 | 平均数 | 中位数 | 众数 |
排球 | 10 | ||
篮球 |
得出结论
如果全校有160人选择篮球项目,达到优秀的人数约为______人;
初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高小军说:篮球项目整体水平较高.
你同意______的看法,理由为______至少从两个不同的角度说明推断的合理性
【题目】已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出x=2时所对应的点,并写出m= .
(4)结合函数的图象,写出该函数的一条性质: .