题目内容
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于【 】
A.25° | B.30° | C.35° | D.40° |
D。
∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°。
∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°。
∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°。
故选D。
∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°。
∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°。
故选D。
练习册系列答案
相关题目