题目内容
大于﹣1而小于的整数是( )
A. 0、1、2、3 B. 1、2、3 C. 2、3、4 D. 0、1、2、3、4
下列关于概率的说法,错误的是( )
A. 明天下雨的概率是80%,即明天80%的时间都下雨;
B. 做投掷硬币试验时,投掷的次数足够多时,正面朝上的频率就越接近于;
C. “13人中至少有2人生肖相同”,这是一个必然事件。
D. 连掷两枚骰子,它们的点数相同的概率是;
如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当﹣3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
在数轴上画出表示的点.(要画出作图痕迹)
如图①所示是一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.若一个身高1.5m的学生(如图②所示的CD)由远处向门走进,要使灯刚好发光,离门的距离为( )
A. 4m B. 3m C. 5m D. 7m
已知6xay4与﹣x5yb﹣2是同类项,求|2a﹣7b|的值.
多项式2x3+3x4﹣3x+1中有_____项,其中最高次项是_____.
阅读理解题
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,
例如,求点P(1,3)到直线4x+3y﹣3=0的距离.
【解析】由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2
根据以上材料,解决下列问题:
(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.
(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.
在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由;
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.