题目内容
如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A. AB∥DC B. AC=BD C. OA=OB D. AC⊥BD
如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.
(1)如图1,求证:∠AND=∠CED;
(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;
(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.
某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务.问计划每天加工服装多少套?设计划每天加工x套,则根据题意可得方程为( )
A. +=18 B. +=18
C. +=18 D. +=18
如图,在平行四边形ABCD中,BE平分∠ABC,交AD于E,CF平分∠BCD交AD于F,AB=5,EF=3,则BC= ___________.
如图,在平行四边ABCD中,∠AEB=36°,BE平分∠ABC,则∠D等于( )
A. 36° B. 72° C. 108° D. 144°
如图所示,四边形ABCD是长方形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.
如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画圆,E是⊙A上一动点,P是BC上的一动点,则PE+PD的最小值是 .
问题探究:
(1)如图①,边长为4的等边△OAB位于平面直角坐标系中,将△OAB折叠,使点B落在OA的中点处,则折痕长为_ __;
(2)如图②,矩形OABC位于平面直角坐标系中,其中OA=8,AB=6,将矩形沿线段MN折叠,点B落在x轴上,其中,求折痕MN的长;
问题解决:
(3)如图③,四边形OABC位于平面直角坐标系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于点A,点Q(4,3)为四边形内部一点,将四边形折叠,使点B落在x轴上,问是否存在过点Q的折痕,若存在,求出折痕长,若不存在,请说明理由.
在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C. 34 D. 10