题目内容
已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.
解:连结AC 、AD,
则在△ABC 和△AED 中有
∴△ABC≌△AED
∴AC=AD
又∵AF⊥CD
∴∠AFC=∠AFD=90°
又∵在Rt△ACF和Rt△ADF中有
∴Rt△ACF≌Rt△ADF∴CF=DF
则在△ABC 和△AED 中有
∴△ABC≌△AED
∴AC=AD
又∵AF⊥CD
∴∠AFC=∠AFD=90°
又∵在Rt△ACF和Rt△ADF中有
∴Rt△ACF≌Rt△ADF∴CF=DF
练习册系列答案
相关题目