题目内容

(2013•扬州一模)已知二次函数y=ax2+bx+c(a≠0)的图象向左平移2个单位,向下平移1个单位后得到二次函数y=x2+2x的图象,则二次函数y=ax2+bx+c(a≠0)的解析式为   
【答案】分析:利用抛物线和二次函数图象的性质.
解答:解:可从新抛物线上找3个点(0,0),(1,3),(-1,-1).向右平移2个单位,向上平移1个单位得(2,1)(3,4)(1,0).则这三点符合原抛物线的解析式.那么4a+2b+c=1,9a+3b+c=4,a+b+c=0,解得:a=1,b=-2,c=1.故解析式为:y=x2-2x+1.
点评:原抛物线上有三个未知数,所以从原抛物线上找三个点是解决问题的关键,这三个点是新抛物线上的经过平移转换还原的三个点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网