题目内容

如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放


  1. A.
    4枚硬币
  2. B.
    5枚硬币
  3. C.
    6枚硬币
  4. D.
    8枚硬币
C
分析:要求摆放硬币最多,我们画出相应的图形,如图,我们只要求得过P对⊙O做切线夹角即可由360°÷夹角度数,得这枚硬币周围最多可摆放个数.
解答:解:如图,⊙P,⊙O,⊙M分别代表一枚硬币.
它们相切,连接PO,PM,OM,则PO=PM=OM.
∴∠OPM=60°
N是OM中点,连接PN.
则PN⊥OM.
∴PN与⊙O,⊙M相切,PN是∠OPM的平分线.
∴∠OPN=30°,
即过P作⊙O的切线与PO夹角为30°,所以过P作⊙O的两切线,则切线夹角为60°
即对应的⊙P的圆心角为60°,
∴⊙P周围摆放圆的个数为=6.
故选C.
点评:这道题考查了相切圆的性质,以及同学们灵活应用它们,想象能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网