题目内容
已知多项式x2+ax-y+b和bx2-3x+6y-3的差的值与字母x的取值无关,求代数式3(a2-2ab-b2)-(4a2+ab+b2)的值.
∵多项式x2+ax-y+b和bx2-3x+6y-3的差的值与字母x的取值无关,(x2+ax-y+b)-(bx2-3x+6y-3)=x2+ax-y+b-bx2+3x-6y+3=(1-b)x2+(a+3)x-7y+b+3
∴1-b=0,a+3=0,
解得:a=-3,b=1,
则原式=(3a2-6ab-3b2)-(4a2+ab+b2)
=3a2-6ab-3b2-4a2-ab-b2
=-a2-7ab-4b2
=-9+21-4
=8.
∴1-b=0,a+3=0,
解得:a=-3,b=1,
则原式=(3a2-6ab-3b2)-(4a2+ab+b2)
=3a2-6ab-3b2-4a2-ab-b2
=-a2-7ab-4b2
=-9+21-4
=8.
练习册系列答案
相关题目