题目内容
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.
【答案】(1)证明见解析;(2)∠DEF=70°; (3)△DEF不可能是等腰直角三角形,理由见解析;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由见解析.
【解析】
(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;
(2)由(1)中的全等得出∠BDE=∠CEF,再由角之间的转化,从而可求解∠DEF的大小;(3)由于AB=AC,可得∠B=∠C≠90°=∠DEF,从而可确定其不可能是等腰直角三角形;
(4)先猜想出∠A的度数,则可得∠EDF+∠EFD=120°,根据前面的推导过程知∠EDF+∠EFD=120°时,∠DEF=60°,再由∠B=∠DEF以及等腰三角形的性质继而推得猜想的正确性.
(1)∵AB=AC,
∴∠B=∠C,
∵AD+EC=AB,AB=AD+BD,
∴BD=CE,
在△BDE和△CEF中,
,
∴△BDE≌△CEF(SAS)
∴DE=EF,
∴△DEF是等腰三角形;
(2)∵∠DEC=∠B+∠BDE,
即∠DEF+∠CEF=∠B+∠BDE,
由(1)知△BDE≌△CEF,
则∠BDE=∠CEF,
∴∠DEF=∠B,
∵∠A=40°,
∴∠B=∠C==70°,
∴∠DEF=70°;
(3)△DEF不可能是等腰直角三角形,
∵AB=AC,
∴∠B=∠C≠90°,
由(2)知∠DEF=∠B,
∴∠DEF=∠B≠90°,
∴△DEF不可能是等腰直角三角形;
(4)当∠A=60°时,∠EDF+∠EFD=120°,
理由是:当∠EDF+∠EFD=120°时,
则∠DEF=180°-120°=60°,
∴∠B=∠DEF=60°,
∴∠A=180°-∠B-∠C=180°-60°-60°=60°,
∴当∠A=60°时,∠EDF+∠EFD=120°.