题目内容
一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
某公司董事会拨出总额为40万元的款项作为奖励金,全部用于奖励本年度作出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共________ 人.
为了抓住集安国际枫叶旅游节的商机,某商店决定购进A、B两种旅游纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元;
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
要了解某校1 000名初中学生的课外作业负担情况,若采用抽样调查的方法进行调查,则下面哪种调查方式具有代表性?( )
A. 调查全体女生 B. 调查七、八、九年级各100名学生
C. 调查全体男生 D. 调查九年级全体学生
如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E
(1)证明:直线PD是⊙O的切线.
(2)如果∠BED=60°,,求PA的长.
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
三角形的每条边的长都是方程的根,则三角形的周长是 .
下列计算正确的是( )
A. x4+x2=x6 B. (a+b)2=a2+b2
C. (3x2y)2=6x4y2 D. (﹣m)7÷(﹣m)2=﹣m5
若多项式x2-kx+9是一个完全平方式,则常数k的值是 ____.
已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.