题目内容
如果点P关于x轴的对称点p1的坐标是(2,3),那么点p关于原点的对称点p2的坐标是___________.
在解方程=1时,去分母正确的是( )
A. 3(x﹣1)﹣2(2+3x)=1 B. 3(x﹣1)+2(2x+3)=1
C. 3(x﹣1)+2(2+3x)=6 D. 3(x﹣1)﹣2(2x+3)=6
若x-y≠0,x-2y=0,则分式的值________.
(10分)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.
在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根为8,2.则这个方程为_______
二次函数的对称轴为( )
A. x=2 B. 直线x=2 C. x=1 D. 直线x=1
菱形ABCD的边长为3,∠BAD=60°.
(1)连接AC,过点D作DE⊥AB于点E,DF⊥BC交AC于点F,DE、DF于点M、N.
①依题意补全图1;
②求MN的长;
(2)如图2,将(1)中∠EDF以点D为中心,顺时针旋转45°,其两边DE′、DF′分别与直线AB、BC相交于点Q、P,连接QP,请写出求△DPQ的面积的思路.(可以不写出计算结果)
已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是( )
A. B. C. D.
如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°,tan22)