题目内容
(2008•西宁)如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.请问有几个符合条件的点P并分别求出它们的坐标.
【答案】分析:(1)根据圆心的坐标和半径的长即可求出A,B两点的坐标,然后将A,B的坐标代入抛物线中即可得出二次函数的解析式.
(2)可先在直角三角形OO1M中求出∠MO1O的度数,然后过M作x轴的垂线,设垂足为F,可在直角三角形MO1F中根据∠MO1O的度数和MO1的长求出MF和O1F的长,即可得出M点的坐标,进而可根据M的坐标求出直线OM的解析式.
(3)由于P在OM上,因此∠POA=∠MOO1,因此本题可分两种情况进行讨论:
①当AP∥O1M时,②当PA⊥OB时.据此可求出P点的坐标.(①可参照求M点坐标时的方法来解,②可直接将A点横坐标代入直线OM的解析式中,即可求出P的坐标).
解答:解:(1)∵圆心的坐标为O1(2,0),⊙O1半径为1,
∴A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过点A,B,
∴可得方程组,
解得:,
∴二次函数解析式为y=-x2+4x-3.
(2)过点M作MF⊥X轴,垂足为F.
∵OM是⊙O1的切线,M为切点,
∴O1M⊥OM(圆的切线垂直于经过切点的半径).
在RT△OO1M中,sin∠O1OM==,
∵∠O1OM为锐角,
∴∠O1OM=30°,
∴OM=OO1•cos30°=,
在RT△MOF中,OF=OM•cos30°=.
MF=OMsin30°=.
∴点M坐标为(),
设切线OM的函数解析式为y=kx(k≠0),由题意可知=k,
∴k=,
∴切线OM的函数解析式为y=x
(3)两个,
①过点A作AP1⊥x轴,与OM交于点P1,
可得Rt△AP1O∽Rt△MO1O(两角对应相等两三角形相似),
P1A=OA•tan∠AOP1=,
∴P1(1,);
②过点A作AP2⊥OM,垂足为,过P2点作P2H⊥OA,垂足为H.
可得Rt△OP2A∽Rt△O1MO(两角对应相等两三角形相似),
在Rt△OP2A中,
∵OA=1,
∴P2=OA•cos30°=,
在Rt△OP2H中,OH=OP2•cos∠AOP2=,
P2H=OP2•sin∠AOP2=,P2(,),
∴符合条件的P点坐标有(1,),(,).
点评:本题主要考查了切线的性质,一次函数和二次函数解析式的确定,相似三角形的判定和性质等知识点.
考查学生分类讨论,数形结合的数学思想方法.
(2)可先在直角三角形OO1M中求出∠MO1O的度数,然后过M作x轴的垂线,设垂足为F,可在直角三角形MO1F中根据∠MO1O的度数和MO1的长求出MF和O1F的长,即可得出M点的坐标,进而可根据M的坐标求出直线OM的解析式.
(3)由于P在OM上,因此∠POA=∠MOO1,因此本题可分两种情况进行讨论:
①当AP∥O1M时,②当PA⊥OB时.据此可求出P点的坐标.(①可参照求M点坐标时的方法来解,②可直接将A点横坐标代入直线OM的解析式中,即可求出P的坐标).
解答:解:(1)∵圆心的坐标为O1(2,0),⊙O1半径为1,
∴A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过点A,B,
∴可得方程组,
解得:,
∴二次函数解析式为y=-x2+4x-3.
(2)过点M作MF⊥X轴,垂足为F.
∵OM是⊙O1的切线,M为切点,
∴O1M⊥OM(圆的切线垂直于经过切点的半径).
在RT△OO1M中,sin∠O1OM==,
∵∠O1OM为锐角,
∴∠O1OM=30°,
∴OM=OO1•cos30°=,
在RT△MOF中,OF=OM•cos30°=.
MF=OMsin30°=.
∴点M坐标为(),
设切线OM的函数解析式为y=kx(k≠0),由题意可知=k,
∴k=,
∴切线OM的函数解析式为y=x
(3)两个,
①过点A作AP1⊥x轴,与OM交于点P1,
可得Rt△AP1O∽Rt△MO1O(两角对应相等两三角形相似),
P1A=OA•tan∠AOP1=,
∴P1(1,);
②过点A作AP2⊥OM,垂足为,过P2点作P2H⊥OA,垂足为H.
可得Rt△OP2A∽Rt△O1MO(两角对应相等两三角形相似),
在Rt△OP2A中,
∵OA=1,
∴P2=OA•cos30°=,
在Rt△OP2H中,OH=OP2•cos∠AOP2=,
P2H=OP2•sin∠AOP2=,P2(,),
∴符合条件的P点坐标有(1,),(,).
点评:本题主要考查了切线的性质,一次函数和二次函数解析式的确定,相似三角形的判定和性质等知识点.
考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关题目