题目内容
【题目】如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是 .
【答案】﹣3
【解析】试题分析:根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出OC=OA,求出△OFC∽△AEO,相似比,求出面积比,求出△OFC的面积,即可得出答案.∵双曲线的图象关于原点对称,
∴点A与点B关于原点对称, ∴OA=OB, 连接OC,如图所示, ∵△ABC是等边三角形,OA=OB,
∴OC⊥AB.∠BAC=60°, ∴tan∠OAC==, ∴OC=OA,
过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F, ∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF, ∴△OFC∽△AEO,相似比, ∴面积比,
∵点A在第一象限,设点A坐标为(a,b), ∵点A在双曲线上, ∴S△AEO=ab=,
∴S△OFC=FCOF=, ∴设点C坐标为(x,y), ∵点C在双曲线上, ∴k=xy,
∵点C在第四象限, ∴FC=x,OF=﹣y. ∴FCOF=x(﹣y)=﹣xy=﹣
练习册系列答案
相关题目