题目内容

【题目】如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.

(1)求证:AP是⊙O的切线;

(2)求PD的长.

【答案】(1)证明:连接OA。

∵∠B=60°,∴∠AOC=2∠B=120°。

又∵OA=OC,∴∠ACP=∠CAO=30°。∴∠AOP=60°。

∵AP=AC,∴∠P=∠ACP=30°。∴∠OAP=90°。∴OA⊥AP。

∴AP是⊙O的切线。

(2)解:连接AD。

∵CD是⊙O的直径,∴∠CAD=90°。∴AD=ACtan30°=3×

∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°。

∴∠P=∠PAD。∴PD=AD=

【解析】(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线。

(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网