题目内容

小强在劳动技术课中要制作一个周长为80cm的等腰三角形.请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量的取值范围.

 

【答案】

.

【解析】

试题分析:我们知道等腰三角形的周长=腰长×2+底长.据此可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).

由三角形的周长公式可得:,即;但由于的取值范围受到图形的限制:一方面,由,即,可确定;另一方面,由三角形三边关系定理及其推论(三角形两边之和大于第三边、三角形两边之差小于第三边)得,即,解得.故的取值范围是.

考点:本题考查的是列函数关系式

点评:本题中求自变量的取值范围时要注意三角形三边关系的运用.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网