题目内容
从﹣1,0,,﹣0.3,π,中任意抽取一个数. 下列事件发生的概率最大的是( )
A. 抽取正数 B. 抽取非负数 C. 抽取无理数 D. 抽取分数
下列图形中,既是轴对称图形又是中心对称图形的有( )
A. 1个 B. 2个 C. 3个 D. 4个
已知实数x、y,满足=y,则x-等于()
A. 2 B. -3 C. 1 D. -1
以绳测井. 若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺. 绳长、井深几何?
题目大意是:用绳子测量水井的深度. 若将绳子折成三等份,一份绳长比井深多5尺;若将绳子折成四等份,一份绳长比井深多1尺. 绳长、井深各式多少尺?若设绳长尺,井深尺,根据题意,列出的方程组为__________________.
如图,等腰直角三角形分别沿着某条直线对称得到图形.若上述对称关系保持不变,平移,使得四个图形能够围成一个不重叠且无缝隙的正方形,此时点的坐标和正方形的边长为( )
A. B. C. D.
由于数学课上需要用到科学计算器,班级决定集体购买,班长小明先去文具店购买了2个A型计算器和3个B型计算器,共花费90元;后又买了1个A型计算器和2个B型计算器,共花费55元(每次两种计算器的售价都不变)
(1)求A型计算器和B型计算器的售价分别是每个多少元?
(2)经统计,班内还需购买两种计算器共40个,设购买A型计算器t个,所需总费用w元,请求出w关于t的函数关系式;
(3)要求:B型计算器的数量不少于A型计数器的2倍,请设计一种购买方案,使所需总费用最低.
如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为_____.(结果保留π)
如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.
(1)求该反比例函数和一次函数的解析式;
(2)连接MC,求四边形MBOC的面积.
下列命题中,真命题是 ( )
A. 对角线相等的四边形是矩形 B. 对角线亘相平分的四边形是平行四边形
C. 对角线互相垂直的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形