题目内容
下列运算正确的是( )
A. a2•a4=a8 B. ﹣=2 C. (3a3)2=9a6 D. 2﹣2=﹣4
问题背景
如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,
,于是.
迁移应用
(1)如图2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三点在同一直线上,连接BD.
(ⅰ)求证:△ADB≌△AEC;
(ⅱ)请直接写出线段AD,BD,CD之间的等量关系式.
拓展延伸
(2)如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(ⅰ)证明:△CEF是等边三角形;
(ⅱ)若AE=5,CE=2,求BF的长.
设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )
A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0
C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0
先化简,再求职:,其中x=.
一个圆锥的底面半径是5cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为( )
A.9cm B.12cm C.15cm D.18cm
已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:
①AE=AF;
②∠CEF=∠CFE;
③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;
④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.
上述结论中正确的序号有 .(把你认为正确的序号都填上)
如图,抛物线与轴的负半轴交于点A,对称轴经过顶点B与轴交于点M.
(1)求抛物线的顶点B的坐标 (用含m的代数式表示);
(2)连结BO,若BO的中点C的坐标为(,), 求抛物线的解析式;
(3)在(2)的条件下,D在抛物线上,E在直线 BM上,若以A、C、D、E为顶点的四边形是平行四边形,求点D的坐标.
备用图
“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)