题目内容

如图,过双曲线y=(k是常数,k>0,x>0)的图象上两点A,B分别作AC⊥x轴于C,BD⊥x轴于D,则△AOC的面积S1和△BOD的面积S2的大小关系为( )

A.S1>S2
B.S1=S2
C.S1<S2
D.S1与S2无法确定
【答案】分析:因为A,B都是双曲线y=(k是常数,k>0,x>0)的图象上的两点,根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,可知S1=S2
解答:解:依题意可知,△AOC的面积S1和△BOD的面积S2有S1=S2=|k|.
故选B.
点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网