题目内容
(本题14分)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.
【答案】
(1)直线DE与⊙O相切
(2)
【解析】
试题分析:(1)连接OD,∵AD平分∠BAC,∴,∵,∴,∴,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,又∵点D在⊙O上,∴直线DE与⊙O相切
(2)
如图1,作DF⊥AB,垂足为F,∴,∵,,∴△EAD≌△FAD,∴,,∵,∴,在Rt△DOF中,,∴
考点:切线的证明,弦心距和半径、弦长的关系
点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等。第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长。
练习册系列答案
相关题目