题目内容

(本题14分)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点DDEAC,交AC的延长线于点E

(1)判断直线DE与⊙O的位置关系,并说明理由;

(2)若AE=8,⊙O的半径为5,求DE的长.

 

【答案】

(1)直线DE与⊙O相切

(2)

【解析】

试题分析:(1)连接OD,∵AD平分∠BAC,∴,∵,∴,∴,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,又∵点D在⊙O上,∴直线DE与⊙O相切

(2)

如图1,作DF⊥AB,垂足为F,∴,∵,∴△EAD≌△FAD,∴,∵,∴,在Rt△DOF中,,∴

考点:切线的证明,弦心距和半径、弦长的关系

点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等。第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网