题目内容
先化简,再求值:÷,其中a满足a2+3a-5=0.
若一个圆锥的底面积为9π,锥高为4,则这个圆锥侧面展开的扇形面积为________.
如图,直线与反比例函数 的图象只有一个交点.
(1)求反比例函数的解析式;
(2)在函数的图象上取异于点的一点,作轴于点,连接交直线于点.设直线与轴交于点,若的面积是面积的倍,求点的坐标.
小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是( )
A. B. C. D.
如图,已知抛物线经过原点O和点A,点B(2,3)是该抛物线对称轴上一点,过点B作BC∥x轴交抛物线于点C,连结BO、CA,若四边形OACB是平行四边形.
(1)① 直接写出A、C两点的坐标;② 求这条抛物线的函数关系式;
(2)设该抛物线的顶点为M,试在线段AC上找出这样的点P,使得△PBM是以BM为底边的等腰三角形并求出此时点P的坐标;
(3)经过点M的直线把□ OACB的面积分为1:3两部分,求这条直线的函数关系式.
对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(241)=_________,F(635)=___________ ;
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:,当F(s)+F(t)=18时,则k的最大值是___.
已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1。则一次函数y=bx+ac的图象可能是( )
A. (A) B. (B) C. (C) D. (D)
如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是__.
如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求的长.
(3)若tanC=2,AE=8,求BF的长.